Quickstart

Levia is currently still in active development. Issues or bugs found are encouraged to be submitted here

Levia's main repository lies in the main branch at https://github.com/Levia-is-us/Levia-us

Prerequisites

  • Python 3.11 or higher

  • Virtual environment tool (venv, conda, etc.)

Installation

  1. Clone the repository:

 cd levia-protocol
  1. Create and activate a virtual environment

python -m venv .venv
source .venv/bin/activate  # On Windows: venv\Scripts\activate`
  1. Install dependencies: pip install -r requirements.txt

Configuration

Create a .env file in the root directory with the following required environment variables

# Selected Model for running Levia_engine
# Supported models are listed in engine/llm_provider/models.json
MODEL_NAME=your_model_name_from_llm_provider

# OpenAI Configuration
OPENAI_API_KEY=your_openai_api_key
OPENAI_BASE_URL=your_openai_base_url

# Azure OpenAI Configuration (if using Azure)
AZURE_OPENAI_API_KEY=your_azure_openai_api_key
AZURE_OPENAI_BASE_URL=your_azure_endpoint

#DeepSeek Configuration (if using DeepSeek)
DEEPSEEK_API_KEY=your_deepseek_api_key
DEEPSEEK_BASE_URL=your_deepseek_base_url

# Claude Configuration (if using Claude)
ANTHROPIC_API_KEY=your_anthropic_api_key'

# Pinecone Configuration (other vector database support is coming soon)
PINECONE_API_KEY=your_pinecone_api_key
PINECONE_HOST=your_pinecone_host

Running the Application

Start the main application:

python main.py

The application will initialize with available tools from the tools/ directory and start an interactive chat session.

Core Features

Tool Integration

The engine automatically scans and loads tools from the tools/ directory. Here's how it works:

def init_tools():
    """Initialize tool registry and caller"""
    registry = ToolRegistry()
    project_root = os.path.dirname(
        os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    )
    tools_dir = os.path.join(project_root, "tools")
    print(f"Scanning tools from: {tools_dir}")
    registry.scan_directory(tools_dir)
    return ToolCaller(registry)

Memory Management

The engine includes short-term memory capabilities for maintaining context during conversations:

class ContextStore:
    def __init__(self, max_length=5):
        """
        Initialize the context store.
        :param max_length: Maximum length of context history to maintain
        """
        self.max_length = max_length
        self.history = []

    def add(self, user_input, model_output):
        """
        Add new conversation to history.
        :param user_input: User input
        :param model_output: Model output
        """
        self.history.append({"user": user_input, "model": model_output})
        # If history exceeds max length, remove oldest entry
        if len(self.history) > self.max_length:
            self.history.pop(0)

    def get_context(self):
        """
        Get current conversation context formatted as string.
        :return: Current conversation context
        """
        context = ""
        for exchange in self.history:
            context += f"User: {exchange['user']}\n"
            context += f"Model: {exchange['model']}\n"
        return context

    def clear(self):
        """
        Clear all history.
        """
        self.history = []

Stream Processing

The engine supports multiple output streams including HTTP, WebSocket, and local file logging:

class Stream:
    """
    Stream class that manages multiple output streams.
    Supports HTTP, local file, and WebSocket output streams.
    """

    def __init__(self, stream_type="local"):
        """
        Initialize Stream with specified stream type.

        Args:
            stream_type (str): Type of stream to initialize ("http", "local", or "websocket")
        """
        self.streams = []
        if stream_type == "http":
            self.add_stream(HTTPStream("http://localhost:8000"))
        elif stream_type == "local":
            self.add_stream(LocalStream())
        elif stream_type == "websocket":
            self.add_stream(WebsocketStream("ws://localhost:8765"))
        else:
            raise ValueError(f"Invalid stream type: {stream_type}")

        # Always add log stream as secondary output
        self.add_stream(LogStream())

Testing

Run tests using pytest:

pytest test/

Last updated